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Strong Permittivity Fluctuations1

The bilocal approximation used in the calculation of the ensemble average of the dyadic
Green’s function strictly requires that ∆ << k2

m as only the first term in the expansion
of the mass operator is retained (see quation (31)). This limitation is the direct result of
the singular behavior of the dyadic Green’s function. To improve upon this limitation,
Dyson’s equation can be written for a modified integral equation. For simplicity let us
assume that the medium has a spherically symmetric correlation function. Denoting the
permittivity function by ǫ(r), the vector wave equation can be written as

∇×∇× E(r) − k2

o

ǫ(r)

ǫo

E(r) = 0 (56)

Instead of using 〈ǫ(r)〉 as the background medium permittivity, the effective permittivity
of the medium (ǫe) will be used as the background permittivity. Then (56) can be written
as

∇×∇× E(r) − k2

o

ǫe

ǫo

E(r) = k2

0

(

ǫ(r) − ǫe

ǫo

)

E (57)

Suppose the dyadic Green’s function for the background medium is denoted by
=

G
e

(r, r′)
which satisfies

∇×∇×
=

G
e

(r, r′) − k2

e

=

G
e

(r, r′) =
=

I δ(r − r′) (58)

where k2

e = ω2µǫe. Using the vector-dyadic Green’s second identity in conjunction with
(57) and (58), it can be shown that

E(r) = Ee(r) + k2

o

∫

dr′
=

G
e

(r, r′)
ǫ(r′) − ǫe

ǫo

E(r′) (59)

where Ee(r) is the mean-field in the background medium in the absence of a fluctuation
given by (ǫ(r) − ǫe). As shown before the dyadic Green’s function for a spherically
symmetric medium can be represented by

1Copyright K. Sarabandi, 1997.
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Figure 1: Potential variation near a small dielectric sphere and the relation between the
incident and internal fields.

=

G
e

(r, r′) =
=

G
e

ps (r, r′) −

=

I

3k2
e

δ(r − r′) (60)

Substituting (60) into (59) it can be shown that

F (r) = Ee(r) + k2

o

∫

dr′
=

G
e

ps (r, r′)ξ(r)F (r′) (61)

where

F (r) =
ǫ(r) + 2ǫe

3ǫe

E(r)

represents the excitation field for a small dielectric sphere with permittivity ǫ(r) in a
background dielectric ǫe and internal field E(r). In (61) ξ(r) is given by

ξ(r) = 3
ǫe

ǫo

(

ǫ(r) − ǫe

ǫ(r) + 2ǫe

)

(62)

In the limit as ǫ(r) → ǫe the fluctuating function ξ(r) → 0 then F (r) → Ee(r). To solve
(61) iteratively, Ee(r) can be substituted for F (r′) in the integral of (61), thus to the
first-order

F (r) = Ee(r) + k2

o

∫

dr′
=

G
e

ps (r, r′)ξ(r′)Ee(r
′)

From the definition of the equivalent medium we expect that the 〈F (r)〉, to the first-
order, reduces to Ee(r). This mandates that

〈ξ(r)〉 = 0 (63)
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Equation (61) is analogous to (4) with
=

G
e

ps (r, r′) as the propagator and k2

0
ξ(r′) as the

scatterer. Assuming ξ(r′) is Gaussian (a big assumption?!), then the bilocal approxima-
tion can be applied to (61) and we get

〈F (r)〉 = Ee(r) + k2

0

∫∫

dr′dr′′
=

G
e

ps (r, r′)·
=

ζ eff (r′, r′′)〈F (r′′)〉 (64)

where
=

ζeff (r′, r′′) is the approximate mass operator under the bilocal approximation
given by

=

ζ eff (r′, r′′) = k2

o

=

G
e

ps (r′, r′′)Cξ(|r
′ − r′′|) (65)

where

Cξ(|r
′−

=

r
′′

|) = 〈ξ(r′)ξ(r′′)〉 (66)

In the limit as the frequency approaches zero (ko → 0) the second term of (64) vanishes.
That is the scattering does not contribute to the mean field. Using (63) we have

〈

ǫ(r) − ǫe

ǫ(r) + 2ǫe

〉

= 0 (67)

Equation (67) is the fundamental equation for deriving the effective dielectric constant
ǫe for a medium with fluctuating permittivity ǫ(r). The classical formula for the effec-
tive (equivalent) dielectric constant of mixture of particles with different permittivities,
known as Polder van Santen mixing formula, can easily be obtained from (67). Suppose
there are n different constituents in a mixture with permittivities and volume fractions
ǫi and fi respectively. Therefore

P [ǫ(r) = ǫi] = fi (68)

where P [·] denotes the probability noting that
∑n

i=1
fi = 1. According to the probability

distribution (68)

n
∑

i=1

ǫi − ǫe

ǫi + 2ǫe

fi = 0 (69)

For example, if there are two components in the mixture then

ǫ1 − ǫe

ǫ1 + 2ǫe

f1 =
ǫe − ǫ2

ǫ2 + 2ǫe

(1 − f1) (70)
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where f1 is the volume fraction of particle 1. Equation (70) is a second order equation
for ǫe; however, since ǫ1 ≤ ǫe ≤ ǫ2 only one of the two solutions is acceptable. Adding
−
∑n

i=1
fi to the left-hand side of (69) and -1 to its right-hand side, we get

n
∑

i=1

fi

ǫi + 2ǫe

=
1

3ǫe

(71)

Also by adding and subtracting ǫo to the numerator of each term of (69) we get

n
∑

i=1

ǫi − ǫo

ǫi + 2ǫe

fi = (ǫe − ǫo)
n
∑

i=1

fi

ǫi + 2ǫe

(72)

Substituting (71) into (72) produces Polder van Santen mixing formula

n
∑

i=1

ǫi − ǫo

ǫi + 2ǫe

fi =
ǫe − ǫo

3ǫe

(73)

where ǫo is the free-space permittivity.

The effective permittivity given by (73) is a result of quasi-static approximation. A more
general result can be obtained under the bilocal approximation. Starting from (61), the
ensemble average of F (r) is given by

〈F (r)〉 = Ee(r) + k2

o

∫

dr′
=

G
e

ps (r, r′)〈ξ(r′)F (r′)〉 (74)

Comparing (74) to the bilocal approximation (equation (64)) it is obvious that

〈ξ(r)F (r)〉 =
∫

dr′
=

ξeff (r − r′)〈F (r′)〉 (75)

Substituting

ξ(r)F (r) =
D(r)

ǫo

−
ǫe

ǫo

E(r)

in (75) we get

〈D(r)〉 = ǫe〈E(r)〉 + ǫo

∫

=

ξeff (r − r′)〈F (r′)〉d3r′ (76)

The integral in (76) is of convolution type and therefore upon taking the Fourier trans-
form of both sides we have

〈D(K)〉 = ǫe〈E(K)〉 + ǫo

=

ξeff (K)〈F (K)〉 (77)
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Let us define the effective dielectric constant by

〈D(K)〉 =
=

ǫeff (K)〈E(K)〉 (78)

Usually we do not expect
=

ǫeff to be a function of position for a statistically homogeneous
random medium, however, (77) indicates that the relation between 〈D(K)〉 and 〈E(K)〉
may be a function of K. From the definition of F (r) we have

〈F (r)〉 =
〈D(r)〉

3ǫe

+
2

3
〈E(r)〉 (79)

Substituting (78) and the Fourier Transform of (79) into (77), it can easily be shown
that:

=

ǫeff (K) = ǫe

=

I +ǫo

(

=

I −
ǫo

3ǫe

=

ξeff (K)
)

−1 =

ξeff (K) (80)

Assuming that ξ(r) has small fluctuations (necessary for the validity of the bilocal ap-
proximation) then

(

=

I −
ǫo

3ǫe

=

ξeff (K)
)

−1

≃
=

I

and therefore

=

ǫeff (K) ≃ ǫe

=

I +ǫo

=

ξeff (K) (81)

Assuming
=

ξeff (K) is a sharply varying function (at low frequencies) we can further
approximate (81) to get

=

ǫeff= ǫe

=

I +ǫo

=

ξeff (0) (82)

where

=

ξeff (0) =
∫

d3r
=

ξeff (r)

= k2

o

∫

d3r
=

G
e

ps (r)Cξ(|r|)

For a spherically symmetric correlation function, using (29), and expanding eiker in terms
of its Taylor series up to second-order, we have
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=

ξeff (0) ≃
2

3
k2

o

[
∫

∞

0

rCξ(r)dr + ike

∫

∞

0

r2Cξ(r)dr

]

(83)

Hence at low frequencies

ǫeff ≃ ǫe +
2

3
ǫok

2

oA1 + i
2

3
ǫok

2

okeA2 (84)

where

A1 =
∫

∞

0

rCξ(r)dr

A2 =
∫

∞

0

r2Cξ(r)dr

The imaginary component of (84) represents loss due to scattering in the medium to the
lowest in frequency. Note the result given by (84) is a low frequency approximation.

5 Distorted Born Approximation

The iterative solution of (61) is known as the distorted Born approximation. The only
difference between the Born and distorted Born approximation is that the mean-field
in the distorted Born approximation is propagating in the effective medium with some
attenuation caused by scattering and the second difference is that permittivity fluctua-
tions are considered to be around the effective dielectric constant instead of the mean
dielectric constant. To demonstrate the procedure we consider a half-space random
medium illuminated by a plane wave. The mean-field to the first-order in permittivity
fluctuations is Ee(r

′) and therefore the fluctuating component of the field outside the
random medium is given by

f(r) = F (r) − Ee(r) = k2

o

∫

v
dr′

=

G
e

01
(r, r′)ξ(r′)Ee(r

′) (85)

Now the scattered power can be evaluated easily

〈|f(r)|2〉 = k4

o

∫∫

+∞

−∞

dx1dy1

∫

0

−∞

dz1

∫∫

+∞

−∞

dx2dy2

∫

0

−∞

dz2 Cξ(|r1 − r2|)

(

=

G
e

01
(r, r1) · Ee(r1

)(

=

G
e

01
(r, r2) · E(r2)

)

∗

(86)

Equation (86) is similar to (13) and can be solved using the procedure outlined for the
first-order Born approximation.
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